小升初数学定义考点总结
小升初数学定义考点总结 第一篇
何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了八零%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的五零%。那么如何复习这四方面的内容呢?
对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点关于一下数论和行程问题的复习方法。
数论在数论学习中学生往往容易犯如下几个错误:
一、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。
二、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。
三、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。
知识体系:
整除问题:
(一)数的整除的特征和性质 (分班常考内容)
(二)位值原理的应用(用字母和数字混合表示多位数)
质数合数:
(一)质数、合数的概念和判断(二)分解质因数(重点)
约数倍数:
(一)最大公约最小公倍数(二)约数个数决定法则 (常考内容)
余数问题:
(一)带余除式的理解和运用;(二)同余的性质和运用;(三)中国剩余定理奇偶问题:(一)奇偶与四则运算;(二)奇偶性质在实际解题过程中的应用完全平方数:(一)完全平方数的判断和性质(二)完全平方数的运用整数及分数的.分解与分拆(重点、难点)
这四个问题我们需要掌握到什么样的程度?
小升初数学定义考点总结 第二篇
一、除数是整数的小数除法计算法则:
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的'小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添零再继续除。
二、除数是小数的小数除法计算法则:
除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用零补足),然后按照除数是整数的小数除法进行计算。
三、在小数除法中的发现:
①当除数大于一时,商小于被除数。如:÷五=
②当除数小于一时,商大于被除数。如:÷
四、小数除法的验算方法:
①商×除数=被除数(通用)②被除数÷商=除数
五、商的近似数:
根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
六、循环小数问题:
A、小数部分的位数是有限的小数,叫做有限小数。如,、等。
小升初数学定义考点总结 第三篇
基本定义与运算定律
一、数与数字的区别
数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字 零~九这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
的意义:零既可以表示“没有”,也可以作为某些数量的界限。如温度等。零是一个完全有确定意义的数。零是最小的自然数,是一个偶数。零零是最小的自然数,是一个偶数。是任何自然数(零除外)的倍数。零不能作除数。
二.自然数:用来表示物体个数的零、一、二、三、四、五、六、七、八、九、一零……叫做自然数。简单说就是大于等于零的整数。
三.整数: 自然数都是整数,整数不都是自然数。
四.小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。
五.混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。
五.纯小数:小数的整数部分为零的小数,叫做纯小数。
七.有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
八.无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
九.循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:……,……都是循环小数。
一零.纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。
一一.混循环小数:与纯循环小数有的区别,不是从十分位开始循环的循环小数,叫混循环小数。
一二.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
二、分数
表示把 “单位一”平均分成若干份,取其中的一份或几份的数,叫做分数。
小升初数学定义考点总结 第四篇
运算的意义
一、整数四则运算
一 、整数加法
把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
【公式】
加数+加数=和
一个加数=和-另一个加数
二 、整数减法
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
三、整数乘法
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,零和任何数相乘都得零. 一和任何数相乘都的任何数。
【公式】
一个因数× 一个因数 =积
一个因数=积÷另一个因数
四 、整数除法
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,零不能做除数。因为零和任何数相乘都得零,所以任何一个数除以零,均得不到一个确定的商。
【公式】
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
二、小数四则运算
一、小数加法
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
二、小数减法
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
三、小数乘法
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
四、小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
五、乘方
求几个相同因数的积的运算叫做乘方。例如 三 × 三 =三二
三、分数四则运算
一. 分数加法
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
二. 分数减法
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
三. 分数乘法
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
四. 乘积是一的两个数叫做互为倒数。
五. 分数除法
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。
小升初数学定义考点总结 第五篇
一、算术
一、加法交换律:两数相加交换加数的位置,和不变。
二、加法结合律:a + b = b + a
三、乘法交换律:a × b = b × a
四、乘法结合律:a × b × c = a ×(b × c)
五、乘法分配律:a × b + a × c = a × b + c
六、除法的性质:a ÷ b ÷ c = a ÷(b × c)
七、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
八、有余数的除法:被除数=商×除数+余数
二、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的'算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:三x =ab+c
三、体积和表面积
三角形的面积=底×高÷二。公式S= a×h÷二
正方形的面积=边长×边长公式S= a二
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷二公式S=(a+b)h÷二
内角和:三角形的内角和=一八零度。
长方体的表面积=(长×宽+长×高+宽×高) ×二公式:S=(a×b+a×c+b×c)×二
正方体的表面积=棱长×棱长×六公式:S=六a二
长方体的体积=长×宽×高公式:V = abh
长方体(或正方体)的体积=底面积×高公式:V = abh
正方体的体积=棱长×棱长×棱长公式:V = a三
圆的周长=直径×π公式:L=πd=二πr
圆的面积=半径×半径×π公式:S=πr二
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=二πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+二s=ch+二πr二
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=一/三底面×积高。公式:V=一/三Sh
四、分数
分数:把单位“一”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:一.如果两个数乘积是一,我们称一个是另一个的倒数。这两个数互为倒数。一的倒数是一,零没有倒数。
分数除以整数(零除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(零除外),分数的大小
分数的除法则:除以一个数(零除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于一。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(零除外),分数的大小不变。
小升初数学定义考点总结 第六篇
一.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
二.圆有无数条半径,有无数条直径。
三.圆心决定圆的位置,半径决定圆的大小。
四.把圆对折,再对折就能找到圆心。
五.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
六.在同一个圆里,直径的长度是半径的二倍,可以表示为d=二r或r=d/二.
圆的周长
八.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取.
或C=r. 半圆的周长
一零. 一= 二= 三= 四= 五= 六=
七= 八= 九= 一零=
圆的面积
一一.用S表示圆的面积, r表示圆的半径,那么S=r^二 S环=(R^二-r^二)
一二. 一一^二=一二一 一二^二=一四四 一三^二=一六九 一四^二=一九六 一五^二=二二五 一六^二=二五六
一七^二=二八九 一八^二=三二四 一九^二=三六一 二零^二=四零零
一三.周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
一五.两个数相除,又叫做这两个数的比。比的后项不能为零.
一六.比的前项和后项同时乘上或除以一个相同的数(零除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,五)表示,它表述一条横线,(五,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:一、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
二、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(零除外),分数值不变。
倒数的意义:乘积为一的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:一、求分数的倒数是交换分子分母的位置。
二、求整数的倒数是把整数看做分母是一的分数,再交换分子分母的位置。
一的倒数是它本身。因为一*一=一
零没有倒数。零乘任何数都得零=零*一,一/零(分母不能为零)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调零除外
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
一、用比的前项和后项同时除以它们的最大公约数。
二、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
三、两个小数的比,向右移动小数点的位置。也是先化成整数比。
比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
常用来做判断的:
一个数除以小于一的数,商大于被除数。
一个数除以一,商等于被除数。
一个数除以大于一的数,商小于被除数。
五、百分数
百分数的约分:百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。
百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到一零零%,出米率、出油率达不到一零零%,完成率、增长了百分之几等可以超过一零零%。一般出粉率在七零、八零%,出油率在三零、四零%。
六、统计
条形统计图可以知道每个数量的多少。
折现统计图可以知数量的增减,
扇形统计图可以知道部分和总量的关系。
小升初数学定义考点总结 第七篇
一.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
二.分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
三.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
四.分数乘整数:数形结合、转化化归
五.倒数:乘积是一的两个数叫做互为倒数。
六.分数的倒数
找一个分数的倒数,例如三/四把三/四这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是四/三。三/四是四/三的倒数,也可以说四/三是三/四的倒数。
七.整数的倒数
找一个整数的倒数,例如一二,把一二化成分数,即一二/一,再把一二/一这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是一/一二,一二是一/一二的倒数。
八.小数的倒数
普通算法:找一个小数的倒数,例如,把化成分数,即一/四,再把一/四这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是四/一。
九.用一计算法:也可以用一去除以这个数,例如,一/等于四,所以的倒数四,因为乘积是一的两个数互为倒数。分数、整数也都使用这种规律。
一零.分数除法:分数除法是分数乘法的逆运算。
一一.分数除法计算法则:
甲数除以乙数(零除外),等于甲数乘乙数的倒数。
一二.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
一三.分数除法应用题:先找单位一。单位一已知,求部分量或对应分率用乘法,求单位一用除法。
小升初数学定义考点总结 第八篇
(一)平面图形知识;(二)平面图形的周长和面积;(三)立体图形的认识;(四)立体图形的表面积和体积。
(一)平面图形知识
①直线、射线、线段的特点、联系与区别。
②角的特征、角的分类、角的度量方法。
③垂直与平行。
④三角形的特征,分类(按边分、按角分)。
⑤四边形。每类图形的特征,特殊与一般的关系。
⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的'关系。
⑦轴对称图形。(能画出学过的轴对称图形的对称轴)
要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。
②能根据图形特征进行合理的判断、选择。
(二)平面图形的周长和面积
①理解周长与面积概念。
②掌握每种图形的周长与面积计算公式及推导过程。
③能应用公式灵活解决问题。
①长方体、正方体、圆柱、圆锥的特征。
②长、正方体的关系。
(三)立体图形的表面积和体积
②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。
③建立这四种立体图形体积计算的联系。
④加强体积与表面积的区别、体积与容积的区别的对比训练。
建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。
如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案——
切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。
小升初数学定义考点总结 第九篇
一、数学知识点:分数应用题
一、知识点概述
分数应用题是研究数量之间份数关系的典型应用题,包括三种类型:求一个数是另一个数的几分之几;求一个数的几分之几是多少;已知一个数的几分之几是多少,求这个数。
分数应用题一方面是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.
二、关键:分数应用题经常要涉及到两个或两个以上的`量,我们往往把其中的一个量看作是标准量.也称为:单位“一”,例如a是b的几分之几,就把数b看作单位“一”.在几个量中,弄清哪一个是单位“一”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是一零零的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“一”和对应的百分率,以及对应量三者的关系。
三、怎样找准分数应用题中单位“一”
(一)部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“一”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“一”。
解答题关键:只要找准总数和部分数,确定单位“一”就很容易了。
(二)两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“一”。
例如:六(二)班男生比女生多——就是以女生人数为标准(单位“一”),
解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
小升初数学定义考点总结 第一零篇
一.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
二.分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
三.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
四.分数乘整数:数形结合、转化化归
五.倒数:乘积是一的两个数叫做互为倒数。
六.分数的倒数
找一个分数的倒数,例如三/四 把三/四这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是四/三。三/四是四/三的倒数,也可以说四/三是三/四的倒数。
七.整数的倒数
找一个整数的倒数,例如一二,把一二化成分数,即一二/一 ,再把一二/一这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是一/一二 ,一二是一/一二的倒数。
八.小数的倒数:
普通算法:找一个小数的倒数,例如 ,把化成分数,即一/四 ,再把一/四这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是四/一
九.用一计算法:也可以用一去除以这个数,例如 ,一/等于四 ,所以的倒数四 ,因为乘积是一的两个数互为倒数。分数、整数也都使用这种规律。
一零.分数除法:分数除法是分数乘法的逆运算。
一一.分数除法计算法则: 甲数除以乙数(零除外),等于甲数乘乙数的倒数。
一二.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
一三.分数除法应用题:先找单位一。单位一已知,求部分量或对应分率用乘法,求单位一用除法。
一四.比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有四项,前项后项各二个.
一五.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
一六.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
一七.比和比例的区别
(一)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=三:四 这是比例。
(二)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。 比例的性质用于解比例。联系: 比例是由两个相等的比组成。
一八.比和比例的意义
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种形式,分数有括号的含义!
一九.比和比例的联系:
比和比例有着密切联系。 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。 比例是由比组成的,如果没有两种量的`比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。 如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。
二零.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
二一.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示
二二.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
二三.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的二倍,半径是直径的二分之一.d=二r或r=d/二。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
二四.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
二五.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。
直径所对的圆周角是直角。九零°的圆周角所对的弦是直径。
二六.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^二;,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
二七.周长计算公式
(一)已知直径:C=πd
(二)已知半径:C=二πr
(三)已知周长:D=c/π
(四)圆周长的一半:一/二周长(曲线)
(五)半圆的周长:一/二周长+直径(π÷二+一)
二八.面积计算公式:
(一)已知半径:S=πr二
(二)已知直径:S=π(d/二)二
(三)已知周长:S=π[c÷(二π)]二
二九.百分数与分数的区别
(一)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘一’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(二)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(三)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是一零零的分数,而分母是一零零的分数并不都具有百分数的意义.
(四)百分数不能带单位名称;当分数表示具体数时可带单位名称。
三零.百分数应用
百分数一般有三种情况: ①一零零%以上,如:增长率、增产率等。 ②一零零%以下,如:发芽率、成长率等。 ③刚好一零零%,如:正确率,合格率等。
三一.百分数的意义
百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。
三二.日常应用
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是二零%,明天白天有五~六级大风,降水概率是一零%,早晚应增加衣服。二零%、一零%让人一目了然,既清楚又简练。
知识点扩展
一.圆的定义
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
二.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
三.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
四.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
五.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
六.圆的种类:(一)整体圆形,(二)弧形圆,(三)扁圆,(四)椭形圆,(五)缠丝圆,(六)螺旋圆,(七)圆中圆、圆外圆,(八)重圆,(九)横圆,(一零)竖圆,(一一)斜圆。
七.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,零≤PO
八.百分数的由来
二零零多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把七米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是七/三米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以一零零做基数,发明了百分数。
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,一个或零个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。零作为多项式时,次数定义为负无穷大(或零)。单项式和多项式统称为整式。
学习数学的方法
多看例题
在学习数学的过程中,一定要多看例题,细心的同学会发现,老师在讲解基础内容之后,总是给我们补充一些课外例题或者习题,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻。
及时纠错
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
小升初数学定义考点总结 第一一篇
用字母表示数
一、用字母表示数的意义和作用
_字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
二、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(一)常见的数量关系
路程用s表示,速度v用表示,时间用t表示,三者之间的关系:
s=vt
v=s/t
t=s/v
总价用a表示,单价用b表示,数量用c表示,三者之间的关系:
a=bc
b=a/c
c=a/b
(二)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c)=a-b-c
(三)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=二(a+b)
s=ab
正方形的边长a用表示,周长用c表示,面积用s表示。
c=四a
s=a二
平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah
三角形的底用a表示,高用h表示,面积用s表示。
s=ah/二
梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/二
s=mh
圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=二∏r
s=∏r二
扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏nr二/三六零
长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=sh
s=二(ab+ah+bh)
v=abh
正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.
s=六a二
v=a三
圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.
s侧=ch
s表=s侧+二s底
v=sh
圆锥的高用h表示,底面积用s表示,体积用v表示.
v=sh/三
三、用字母表示数的写法
数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“一”与任何字母相乘时,“一”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
四、将数值代入式子求值
_具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。
_一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
小升初数学定义考点总结 第一二篇
一、数与数字的区别
数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字 零~九这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
的意义:零既可以表示“没有”,也可以作为某些数量的界限。如温度等。零是一个完全有确定意义的数。零是最小的自然数,是一个偶数。零零是最小的自然数,是一个偶数。是任何自然数(零除外)的倍数。零不能作除数。
二.自然数:用来表示物体个数的零、一、二、三、四、五、六、七、八、九、一零……叫做自然数。简单说就是大于等于零的整数。
三.整数: 自然数都是整数,整数不都是自然数。
四.小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。
五.混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。
五.纯小数:小数的整数部分为零的'小数,叫做纯小数。
七.有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
八.无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
九.循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:……,……都是循环小数。
一零.纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。
一一.混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。
一二.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
二、分数
表示把 “单位一”平均分成若干份,取其中的一份或几份的数,叫做分数。
小升初数学定义考点总结 第一三篇
何谓数、行、形、算,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了八零%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的五零%。
知识体系:
约数倍数:
(一)最大公约最小公倍数(二)约数个数决定法则 (小升初常考内容)
质数合数:
(一)质数、合数的概念和判断(二)分解质因数(重点)
余数问题:
(一)带余除式的理解和运用;
(二)同余的性质和运用;
中国剩余定理奇偶问题:
(一)奇偶与四则运算;
(二)奇偶性质
在实际解题过程中的应用完全平方数:
(一)完全平方数的判断和性质
(二)完全平方数的运用整数及分数的分解与分拆(重点、难点)
整除问题:
(一)数的整除的特征和性质 (小升初分班常考内容)
(二)位值原理的应用(用字母和数字混合表示多位数)
这四个问题我们需要掌握到什么样的程度?
上文是小升初数学考试知识点,希望文章对您有所帮助!
[必备小升初数学考试知识点总结]
小升初数学定义考点总结 第一四篇
纯小数:整数部分是零的小数,叫做纯小数。例如: 、 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 、 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 、 、 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如:
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的`小数叫做无限不循环小数。 例如:
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如:
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 的循环节是 九 , 的循环节是 五四 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如:
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 简写作 简写作 。
小升初数学定义考点总结 第一五篇
一、构建知识脉络
要学会构建知识脉络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题。
二、夯实数学基础
在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出组合信息,寻找解题途径、优化解题过程。
三、建立病例档案
准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
四、常用公式技巧
准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:一-二零的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;三零°、四五°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
五、强化题组训练
除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
数学考试的注意事项
一、务必仔细读题,审题。
读题三要素:
①一个一个字读题,不要一目十行,被略过的每一个字都是危险的。
②注意题目中出现的单位是否一致!
③看清楚题目的问题部分,比如求“值”还是“最小值”,是求“比”还是“比值”等!
另外,碰到以前见过的题目,尤其要小心,看有无不同之处!
二、题量估计不小,千万不要在某道题目上浪费太多时间。有不会做的`题目,先空着,等全部做完后,再回头研究!
三、枚举法(解决计数问题)、方程法(应用题通常会用到)、设数法(有率无量的题目)将会是非常有可能被用到的方法。
四、【选择题】不要空题!如果直接正面去做解决不掉,就灵活运用排除法,选项带入法,特殊情况等方法,如果还搞不定,交卷前,猜也要猜上一个。
五、【填空题】不要空题!注意结果是否要带单位。
六、【计算题】眼睛睁大,不要把数字给抄错了!基本四则运算(注意运算顺序),简便运算(估计是提取公因数的题目),解方程(务必注意移项要变号)。结果若是分数,务必是最简分数。
七、【应用题】不管是分数应用题,比例应用题,工程问题,经济问题,浓度问题,还是盈亏、鸡兔同笼等经典应用题,除了解决这些问题的常规方法,方程法非常有可能会派上用场。如果出现有难度的行程问题,考虑方程法和比例法这两大解决行程问题的方法。
八、【压轴题】无论是任何学校,任何题型的压轴题,通常以层层设问的方式出现,即通常至少两问。一般来说,对于多问的压轴题,务必想明白两点,①第一问会非常简单②简单的第一问的解答思路会给,如何解决较难的第二问提供非常重要的线索!
如果压轴题是动点问题,注意可能有多种情况;如果压轴题是行程问题,注意方程法和比例法;如果压轴题是材料阅读题,冷静思考材料;如果压轴题是操作类几何题,注意往学过的几何知识上靠拢。
九、【检查】 ①检查时,先看全卷有没有漏做的题目。
②检查数学部分时,建议先检查计算题。
③ 检查时,方法要灵活!对于解方程和一些应用题,完全可以用“把结果代入题目”的方式检查。另外,用新的解法把题目再做一遍,也是一种检查的方式。
一零、【格式方面】①选择、填空只写最后结果,计算、解答题要有必要的步骤。
②书写务必整洁!写错的地方不建议用涂改液或胶带,拉掉就行。
③对于解答题,如果没法完全搞定,可以分步去写,这样可以得到步骤分。
小升初数学定义考点总结 第一六篇
一、三位数乘两位数的方法:
先用一个因数的个位与另一个因数的每一位依次相乘,再用这个因数的十位与另一个因数的每一位依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满十就向前一位进“一”,再把两次相乘的积加起来。末尾有零时,把两个因数零前面的数对齐,并将它们相乘,再在积的后面添上没有参加运算的几个零。中间有零时,这个零要参加运算。
二、因数和积的变化规律:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
三、因数是两、三位数的乘法的估算方法:先把两个因数的位后面的尾数省略,求出近似数,再把这两个近似数相乘。
【补充知识点】
一、估算方法:用四舍五入法进行估算。估算是往大估还是往小估?也就是估算的方法问题;
二、利用竖式计算三位数乘两位数。注意,第二步的乘积末尾写在十位上。
三、因数中间或末尾有零的三位数乘两位数。
中间有零也要和因数分别相乘;末尾有零的,要将两个因数零前面数的末位对齐,用零前面的数相乘,乘完之后在落零,有几个零落几个零。
实际生活中的估算:
生活中的实际问题(估算是往大估还是往小估?)
a、三五零名同学要外出参观,有七辆车,每辆车有五六个座位,估一估要几辆车?
b、桥在重量三吨,货物共六箱,每箱重二八五千克,车重九八六千克,这辆车能过去吗?
【知识点】
估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。
人教版四年级上册数学《角的度量》知识点
一.直线、射线、角
直线:向两端无限延伸的线,直线无端点。
射线:能像一个方向延伸的线,射线有一个端点。
线段:不能延伸的线,线段有两个端点。
具有公共端点的两条射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
二.直线、射线与线段的联系和区别
一)直线和射线都可以无限延伸,因此无法量出长短。
二)线段可以量出长度。
三)线段有两个端点,直线没有端点,射线只有一个端点。
三.角的特征
角有一个顶点,两条边
四.角的大小比较:
角的计量单位是“度”,符号“°”,把半圆平分成一八零等份,每一份所对的角的大小是l度。记做一°,角大小的测量借助量角器
小升初数学定义考点总结 第一七篇
数的性质和规律
一、商不变的规律
在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
二、小数的性质
在小数的末尾添上零或者去掉零小数的大小不变。
三、小数点位置的移动引起小数大小的变化
一. 小数点向右移动一位,原来的数就扩大一零倍;小数点向右移动两位,原来的数就扩大一零零倍;小数点向右移动三位,原来的数就扩大一零零零倍……
二. 小数点向左移动一位,原来的数就缩小一零倍;小数点向左移动两位,原来的数就缩小一零零倍;小数点向左移动三位,原来的数就缩小一零零零倍……
三. 小数点向左移或者向右移位数不够时,要用“零_补足位。
四、分数的基本性质
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
五、分数与除法的关系
一. 被除数÷除数= 被除数/除数
二. 因为零不能作除数,所以分数的分母不能为零。
三. 被除数相当于分子,除数相当于分母。
小升初数学定义考点总结 第一八篇
注重预习,质疑问难
所谓预习,就是在老师讲课之前自己预先学习,预习分近期预习和远期预习,远期预习是指提前一个月,几个月的预习。比如假期中自学整册语文课本;近期预习指课前预习和章节前的一两个星期的预习。
预习最大的好处就是培养自学能力,发现自己知识的缺陷,以利改正,同时有利于认真听课。语文课文的预习可分如下步骤进行,可称作“四遍八步读书法”。
这种预习法,不是固定不变的,可灵活掌握,对有的文章可省去某一步或某几步。预习时要在课本上圈点勾画,标出重点、难点、疑问点。
预习的关键是思考,思考文章背后的东西,不要只留于表面,留于浅层次的理解。如遇到百思不得其解的内容可上课认真听讲,认真讨论,也可向老师请教,千万不要担心问题的质量,真正做到“不耻下问”。
小升初数学定义考点总结 第一九篇
年龄问题的三大规律:
一.两人的年龄差是不变的;
二.两人年龄的倍数关系是变化的量;
三.随着时间的推移,两人的年龄都是增加相等的量.
年龄问题的核心是:大小年龄差是个不变的量,而年龄的倍数却年年不同。
解答年龄问题的一般方法是:
几年后年龄=年龄差÷倍数差一小年龄,
几年前年龄=小年龄一年龄差÷倍数差。
一、父亲现年五零岁,女儿现年一四岁.问:几年前父亲年龄是女儿的五倍?
解析:父女的年龄差是五零-一四=三六岁。年龄差是不变的。当父亲的年龄是女儿的五倍的时候,父亲比女儿大了五-一=四倍。因此,三六岁是父亲比女儿多的四倍年龄。那么,当时女儿的年龄是三六÷四=九岁。
因此,一四-九=五年前父亲的年龄是女儿的五倍。
如果公式熟练的话,就是:一四-(五零-一四)÷(五-一)=一四-九=五
一零年前吴昊的年龄是他儿子年龄的七倍.一五年后,吴昊的年龄是他儿子的二倍.现在父子俩人的年龄各是多少岁?
解析:根据一五年后吴昊的年龄是他儿子年龄的二倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于一零年前儿子的年龄加上二五岁。
一零年前吴昊的年龄是他儿子年龄的七倍,父子年龄差相当于儿子当时年龄的七-一=六倍。
由于年龄差不变,所以儿子一零年前的年龄的六-一=五倍正好是二五岁,可以求出儿子当时的年龄,从而使问题得解。
解:①儿子一零年前的年龄:(一零+一五)÷(七-二)=五(岁)
②儿子现在年龄:五+一零=一五(岁)
③吴昊现在年龄: 五×七+一零=四五(岁)
四、甲对乙说:当我的岁数是你现在岁数时,你才四岁。乙对甲说:当我的岁数到你现在的岁数时,你将有六七岁,甲乙现在各有:
A.四五岁,二六岁B.四六岁,二五岁C.四七岁二四岁 D.四八岁,二三岁
解析:下面是推理过程:假设甲乙的年龄差为X
则根据甲的.假设,当甲是乙现在的年龄时,乙是四岁。则乙现在的年龄是四+X
因为甲乙的年龄差是X,那么甲现在的年龄是四+二X
因此,根据乙的假设,当乙的年龄是四+二X时,甲的年龄是四+二X+X=六七
因此X=(六七-四)/三=二一
乙的年龄(六七-四)/三+四=二五岁,甲的年龄是四+二一*二=四六岁
五、今年父亲年龄是儿子年龄的一零倍,六年后父亲年龄是儿子年龄的四倍,则今年父亲、儿子的年龄分别是( )
A.六零岁,六岁 B.五零岁,五岁 C.四零岁,四岁 D.三零岁,三岁
解析:依据“年龄差不变”这个关键和核心,今年父亲年龄是儿子年龄的一零倍,也即父子年龄差是九倍儿子的年龄。六年后父亲年龄是儿子年龄的四倍,也即父子年龄差是三倍儿子的年龄(六年后的年龄)。依据年龄差不变,我们可知
九倍儿子现在的年龄=三倍儿子六年后的年龄
即九倍儿子现在的年龄=三×(儿子现在的年龄+六岁)
即六倍儿子现在的年龄=三×六岁
儿子现在的年龄=三岁
小升初数学定义考点总结 第二零篇
把整数一平均分成一零份、一零零份、一零零零份 得到的十分之几、百分之几、千分之几 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是一零。小数部分的最高分数单位十分之一和整数部分的最低单位一之间的进率也是一零。
小升初数学定义考点总结 第二一篇
分数与百分数的应用
基本概念与性质:
分数:把单位“一”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(零除外),分数的大小不变。
分数单位:把单位“一”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
小升初数学定义考点总结 第二二篇
数与代数
百分数的应用
(一)求一个数比另一个数多(少)百分之几的实际问题
①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量另一个数
②例题:六年级男生有一八零人,女生有一六零人,男生比女生多百分之几?女生比男生少百分只几?
男生比女生多的人数 女生人数= 百分之几 (一八零- 一六零) 一六零 =
女生比男生少的人数 男生人数= 百分之几 (一八零- 一六零) 一八零
(二)纳税问题
①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的.比率叫做税率,
应纳税额 = 收入 税率
②例题:张强编写的书在出版后得到稿费一四零零元,稿费收入扣除八零零元后按一四%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?
(一四零零- 八零零)一四% = 八四(元)
(三)利息问题
①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 利率 时间
②例题:叔叔今年存入银行一零万元,定期二年,年利率,二年后到期,扣除利息税五%,得到的利息能买一台六零零零元的电脑吗?
一零零零零零 二 (一 -五%) = 八五五零(元)
八五五零元 六零零零元 得到的利息能买一台六零零零元的电脑
(四)有关折扣问题
①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 折数。
②例题:一种衣服原价每件五零元,现在打九折出售,每件售价多少元?
九折就是九零%,五零九零%=(元)
例题:一种衣服现在打九折出售,现在售价是四五元,每件的原价是多少元?
九折就是九零%,ⅹ九零% = 四五 ⅹ=五零
(五)列方程解稍复杂的百分数实际问题
①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答已知比一个数多(少)百分之几的数是多少,求这个数的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。
②例题:果园里的梨树和苹果树共有三六零棵,其中的苹果树的棵树是梨树的棵树的二零%。苹果树和梨树各有多少棵?
解:设梨树有x棵,苹果树有二零%x棵
x + 二零%x = 三六零 x = 三零零
二零%x = 三零零 二零% = 六零
答:梨树有三零零棵,苹果树有六零棵。
例题:某工厂六月份用煤六零吨,六月份比五月份少用煤二五%,五月份用煤多少吨?
解:设五月份用煤x吨
x - 二五%x = 六零 x = 八零
答:五月份用煤八零吨。
以上是小升初数学重要知识点,读后您收获多少呢?
小升初数学定义考点总结 第二三篇
一二.大数的读法:读几个零的问题
【相关例题】一零,零零七零,零零零八读几个零?【错误答案】其他【正确答案】二个
【例题评析】
大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。
一三.近似值问题
【相关例题】一个数的近似数是一万,这个数最大是_________【错误答案】九九九九【正确答案】一四九九九
【例题评析】
四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。
一四. 数大小排序问题:注意题目要求的大小顺序
【相关例题】把,π,二二/七按照从大往小的顺序排列____________【错误答案】;π<二二/七【正确答案】二二/七>π>
【例题评析】
题目怎么要求就怎么来,别瞎胡闹。并且一定要写原数排序。
一五.比例尺问题:注意面积的比例尺
【相关例题】在比例尺为一:的沙盘上,实际面积为八零零零零零平方米的生态公园为_____平方米【错误答案】四零零【正确答案】
【例题评析】
很多同学直接用八零零零零零÷二零零零,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上一长度单位是实际中的二零零零长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上一面积单位是实际中的四零零零零零零面积单位。
一六.正反比例问题:未搞清正比例、反比例的含义
【相关例题】判断对错:圆的面积与半径成正比例【错误答案】√【正确答案】×
【例题评析】
若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格定义,原改为“圆的面积与半径的平方成正比”,才是正确的。
一七.比的问题:注意前后项的顺序
【相关例题】
一个正方形边长增加它的一/三后,则原正方形与新正方形面积的比为_________。
【错误答案】一六:九【正确答案】九:一六
【例题评析】
谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!
一八.比的问题:比与比值的区别
【相关例题】
一个正方形边长增加它的一/三后,则原正方形与新正方形面积的比值为_______。
【错误答案】九:一六【正确答案】九/一六【例题评析】比值是一个结果,是一个数。
一九.单位问题:不要漏写单位
【相关例题】
边长为四厘米的正方形,面积为________。
【错误答案】一六【正确答案】一六平方厘米
【例题评析】
面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!
二零.单位问题:注意单位的一致
【相关例题】
某种面粉袋上标有(二五kg加减五零g)的标记,这种面粉最重是___kg。
【错误答案】七五【正确答案】
【例题评析】
很多同学没有看到kg与g的单位不一致,直接给出了七五的错误答案。
二一.闰年,平年问题:不清楚闰年的概念
【相关例题】
一九是闰年还是平年?
【错误答案】闰年【正确答案】平年
【例题评析】
四年一闰,百年不闰,四百年再闰。如果一个年份是四的倍数,则为闰年;否则是平年。但是如果是整百的年份(如一九零零年,),则必须为四零零的倍数才是闰年,否则为平年。
二二.解方程问题:括号前面是减号,去括号要变号!移项要变号!
【相关例题】
六—二(二X—三)=四
【错误答案】其他【正确答案】x=二
【例题评析】
去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!
二三.计算问题:牢记运算顺序
【相关例题】二零÷七×一/七【错误答案】二零【正确答案】二零/四九
【例题评析】
五三零考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运算、运算顺序以及提取公因数等计算基本功的考察。
二四.平均速度问题
【相关例题】小明上山速度为一米/秒,下山速度为三米/秒,则小明上下山的平均速度为____【错误答案】(一+三)÷二=二(米/秒)【正确答案】设上山全程为三米,则平均速度为:(三×二)÷(三÷一+三÷三)=(米/秒)
【例题评析】平均速度的定义为:总路程÷总时间
二五.题目有多种情况
【相关例题】等腰三角形一个角的度数是五零度,则它的顶角是_______【错误答案】八零度【正确答案】五零度或八零度
【例题评析】
很多类型的题目,结果往往不止一个。同学们一定要注意思考的缜密性,平时做题时多总结,尽量把所有情况都想全。不要做出一个答案后,就以为大功告成。
二六.注意表述的完整性
【相关例题】一个三角形的三个内角之比为一:一:二,这是一个_______三角形。【错误答案】等腰三角形【正确答案】等腰直角三角形
【例题评析】
这种题目,只有平时训练时多思考,多总结,考试时才能保证不犯错误。
小升初数学定义考点总结 第二四篇
专题一:计算
我一直强调计算,扎实的算功是学好数学的必要条件。聪明在于勤奋,知识在于积累。积累一些常见数是必要的。如一/八,一/四,三/八,一/二,五/八,三/四,七/八的分数,小数,百分数,比的互化要脱口而出。一零零以内的质数要信手拈来。一-三零的平方,一-一零的立方的结果要能提笔就写。对于整除的判定仅仅积累二,三,五的是不够的。九的整除判定和三的方法是一样的。还有就是二和五的n次方整除的判定只要看末n位。如四和二五的整除都是看末二位,末二位能被四或二五整除则这个数可以被四或二五整除。八和一二五就看末三位。七,一一,一三的整除判定就是割开三位。前面部分减去末三位就可以了如果能整除七或一一或一三,这个数就是七或一一或一三的倍数。这其实是判定一零零一的方法。此外还有一种方法是割个位法,望同学们至少掌握二零以内整除的判定方法。
接下来讲下数论的积累。一搞清楚什么是完全平方数,完全平方数个位只能是零,一,四,五,六,九.奇数的平方除以八余一,偶数的平方是四的倍数。要掌握如何求一个数的约数个数,所有约数的和,小于这个数且和这个数互质数的个数如何求。如何估计一个数是否为质数。
计算分为一般计算和技巧计算。到底用哪个呢?首先基本的运算法则必须很熟悉。不要被简便运算假象迷惑。这里重点说下技巧计算。首先要熟练乘法和除法的分配律,其次要熟练a-b-c=a-(b+c)a-(b-c)=a-b+c
还有连除就是除以所有除数的积等。再者对于结合交换律都应该很熟悉。分配律有直接提公因数,和移动小数点或扩大缩小倍数来凑出公因数。甚至有时候要强行创造公因数。再单独算尾巴。
分数的裂项:裂和与裂差 等差数列求和,平方差,配对,换元,拆项约分,等比定理的转化等都要很熟悉。还有就是放缩与估计都要熟练。在计算中到底运用小数还是分数要看情况。如果既有分数又有小数的题,如果不能化成有限小数的分数出现的话整个计算应该用分数。当小数位数不超过二位且分数可以化为三位以内的小数时候可以用小数。计算时候学会凑整。看到二五找四,看到一二五找八,看到二找五这些要形成条件反射。如七九九二乘以二五
很多孩子用竖式算很久,而实际上只要七九九二除以四再乘以一零零=(八零零零-八)除以四再乘以一零零=一九九八零零运用下除法分配律。这些简便的方法不要要求简便的时候才用,平时就要多用才熟能生巧。
最后讲下公比是一/二的等比数列。很多孩子做一/二+一/四+...+一/六四能很快一-一/六四=六三/六四,但如果是一/四+一/八+一/一六+..+一/二五六就不会了。实际上一样的裂项,为一/二-一/四+一/四-一/八+...+一/一二八-一/二五六=一/二-一/二五六=一二七/二五六.所以要学活总结裂项的几种形式。最后一般化。
专题二:解方程
解方程一般是运用等式性质,由于小学生没学过移项。所以稍复杂的方程容易错符号。如三七-二x=三九-三x
解这样方程建议先把两边加三x 得到三七+x=三九 x=二 有的直接做容易搞成五x=二,所以做完后要检验。解含有分母的方程建议首先把分子的多项式加括号。然后左右两边每个加数或减数都乘以最小公倍数。注意凡是整体加上括号,最后用分配律和加减的简便运算方法去掉括号。这样不会错符号和漏乘调理也清楚。还有注意训练整体意识如解六零(一零零-x)=七二(九七-x)就应该两边首先约去一二计算更好。对于机构复杂出现重复部分的方程还要注意换元。平时还可以多解一些稍微复杂的百分数方程。
专题三:分数,比,百分数应用题
解决这类题关键在于搞清楚标准。明白一倍是什么,比的一份是什么。如六零比---多一/五,六零比----少一/五,六零是---的一/五,---是六零的一/五,---比六零多一/五,----比六零少一/五.这个准备题能全对说明标准吃透了否则还要在找标准量上加强训练。注意分数带单位表示具体数量,不带单位表示的实际上是倍数。只是同学们习惯看整数和小数倍不习惯看分数倍数。百分数就只能表示倍数,不能表示数量是不可以带单位的。如果用比解决问题就务必吃透一份是多少。其实分数应用题都可以转化为A是B的多少倍?已知一倍求多倍乘法,已知多倍求一倍除法。比如A比B多一/三,这时候标准是B A比一倍多一/三倍就是A是B的四/三倍。马上有A:B=四:三,对于应用题中分数和比的转化要清晰。很多题我们用分数抽象但用比很好理解。因为孩子熟悉整数,不喜欢分数这时事实。对于百分数应用题我们可以化为比转化为孩子喜欢的东西。其实很多有不变数量的题就是找到不变量,统一不变量对应份数,求出一份是多少,按比例分配这四步曲一般分数,百分数比的应用题就搞定了。对于浓度问题和商品利润问题我讲了十字交叉法。对于有些孩子可能难理解,考试在大题中也不适宜用。其实浓度问题列方程就从溶质入手就可以了。
小升初数学定义考点总结 第二五篇
整数和小数
一.最小的一位数是一,最小的自然数是零
二.小数的意义:把整数“一”平均分成一零份、一零零份、一零零零份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
三.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
四.小数的分类:小数 有限小数
无限循环小数
无限小数
无限不循环小数
五.整数和小数都是按照十进制计数法写出的数。
六.小数的性质:小数的末尾添上零或者去掉零,小数的大小不变。
七.小数点向右移动一位、二位、三位……原来的数分别扩大一零倍、一零零倍、一零零零倍……
小数点向左移动一位、二位、三位……原来的数分别缩小一零倍、一零零倍、一零零零倍……
小升初数学定义考点总结 第二六篇
一、整除的性质:
一 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
二 如果a能被b整除,b又能被c整除,那么a也能被c整除。
三 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
四. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
数的整除
二、基本概念和符号:
一、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
二、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;
三、整除判断方法:
一. 能被三、九整除:各个数位上数字的和能被三、九整除。
二. 能被七整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被七整除。
②逐次去掉最后一位数字并减去末位数字的二倍后能被七整除。
三. 能被一一整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被一一整除。
②奇数位上的数字和与偶数位数的数字和的差能被一一整除。
③逐次去掉最后一位数字并减去末位数字后能被一一整除。
四. 能被二、五整除:末位上的数字能被二、五整除。
五. 能被四、二五整除:末两位的数字所组成的数能被四、二五整除。
六. 能被八、一二五整除:末三位的`数字所组成的数能被八、一二五整除。
七. 能被一三整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被一三整除。
②逐次去掉最后一位数字并减去末位数字的九倍后能被一三整除。
四、最小公倍数的性质:
一、两个数的任意公倍数都是它们最小公倍数的倍数。
二、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:一、短除法求最小公倍数;二、分解质因数的方法
求最大公约数基本方法:
一、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
二、短除法:先找公有的约数,然后相乘。
三、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
一二的倍数有:一二、二四、三六、四八……;
一八的倍数有:一八、三六、五四、七二……;
那么一二和一八的公倍数有:三六、七二、一零八……;
那么一二和一八最小的公倍数是三六,记作[一二,一八]=三六。
五、质数与合数
质数:一个数除了一和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了一和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=
其中a一、a二、a三……an都是合数N的质因数,且a一
求约数个数的公式:P=(r一+一)×(r二+一)×(r三+一)×……×(rn+一)
互质数:如果两个数的最大公约数是一,这两个数叫做互质数。
小升初数学定义考点总结 第二七篇
整除
如果c|a, c|b,那么c|(ab)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=一, 那么bc|a
如果c|b, b|a, 那么c|a
小数
自然数:用来表示物体个数的整数,叫做自然数。零也是自然数。
纯小数:个位是零的小数。
带小数:各位大于零的小数。
循环小数:一个小数,从小数部分的'某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如三. 一四一四一四
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如三. 一四一五九二六五四
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如三. 一四一四一四
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如三. 一四一五九二六五四
利润
利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
小升初数学定义考点总结 第二八篇
一、体积和表面积
三角形的面积=底×高÷二。 公式 S= a×h÷二
正方形的面积=边长×边长 公式 S= a二
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷二 公式 S=(a+b)h÷二
内角和:三角形的内角和=一八零度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×二 公式:S=(a×b+a×c+b×c)×二
正方体的表面积=棱长×棱长×六 公式: S=六a二
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a三
圆的周长=直径×π 公式:L=πd=二πr
圆的面积=半径×半径×π 公式:S=πr二
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=二πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+二s=ch+二πr二
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=一/三底面×积高。公式:V=一/三Sh
二、算术
加法交换律:两数相加交换加数的位置,和不变。
加法结合律:a + b = b + a
乘法交换律:a × b = b × a
乘法结合律:a × b × c = a ×(b × c)
乘法分配律:a × b + a × c = a × b + c
除法的性质:a ÷ b ÷ c = a ÷(b × c)
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
有余数的除法: 被除数=商×除数+余数
三、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:三x =ab+c
四、分数
分数:把单位“一”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:一.如果两个数乘积是一,我们称一个是另一个的倒数。这两个数互为倒数。一的倒数是一,零没有倒数。
分数除以整数(零除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(零除外),分数的大小
分数的除法则:除以一个数(零除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于一。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(零除外),分数的大小不变。
五、数量关系计算公式
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
六、长度单位
一公里=一千米 一千米=一零零零米
一米=一零分米 一分米=一零厘米 一厘米=一零毫米
七、面积单位
一平方千米=一零零公顷 一公顷=一零零零零平方米
一平方米=一零零平方分米 一平方分米=一零零平方厘米 一平方厘米=一零零平方毫米
一亩=平方米。
小升初数学定义考点总结 第二九篇
必背定义、定理公式
三角形的面积=底×高÷二。 公式 S= a×h÷二
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷二 公式 S=(a+b)h÷二
内角和:三角形的内角和=一八零度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=二πr
圆的面积=半径×半径×π 公式:S=πr二
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=二πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+二s=ch+二πr二
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=一/三底面×积高。公式:V=一/三Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面
一、加法交换律:两数相加交换加数的位置,和不变。
二、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
三、乘法交换律:两数相乘,交换因数的位置,积不变。
四、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
五、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(二+四)×五=二×五+四×五
六、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
七、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
八、什么叫方程式?答:含有未知数的等式叫方程式。
九、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。