大学建模论文小组总结
大学建模论文小组总结 第一篇
(一)数学建模选修及数学实验选修开展工作
数学建模及实验是我社团指导老师针对我学院及社团的需要开设的选修课程,有助于成员学习并了解更多的建模知识。
(二)思维锻炼及团队意识培养活动古希腊雅典神庙上有句箴言:“认识你自己。”古罗马大哲西塞罗说:“每个人都对自己了解最少。”他们的提示适用于我们对右脑的认识和对自己的了解。那么我们又要如何的去锻炼我们的思维呢?一根线,一张纸,几根细竹,几笔色彩,就构成了理想的框架。理想期待同学们放飞,期待青年娇子傲视大地,向目的地奔驰。放风筝的户外活动让同学们放飞了梦想,并树立了为实现梦想而努力奋斗的信心。数独技巧讲座更是了大家缓解紧张的学习和生活带来的压力,感受到了数学的乐趣,展现了社团成员们的昂扬风貌。
(三)首届“大明眼镜”杯数独大赛
为响应我党建党九零周年及我学院成立一零周年,我社联合兄弟社团特举办首届数独大赛。通过此次比赛丰富我校大学生的课余生活,拓展大家的思维能力,增强同学们的逻辑思维能力和推理能力,让大家对数学的学习兴趣更加浓厚。本次比赛共有一八零余人参加,经过紧张激烈的角逐之后,最后信息学院的李凯跃同学以一七秒的.优势夺冠,获得二等奖的是理学系戈苑、李小丽同学;三等奖信息学院王健、理学系董全苗、王通同学;优秀奖信息学院赵鹏飞、庞浩淼、苗成森及管理学院柴晓玲、王蕊同学。
(四)“全国数学建模大赛”的报名及培训
六月份我社团在理学系的带领下面向全院展开了“全国数学建模大赛”的报名工作,并于七月八号到七月一四开展为期一星期的第一期集训,使同学们自身有了一定的提高,为九月九日到一二日的比赛打好基础。
大学建模论文小组总结 第二篇
总体而言,通过本学期多次活动的举办,使我社团在各方面都有了一个很大的提高。首先理事会成员的组织能力与责任心上得到了进一步的提高,再就是为我社团培养出来一大批责任心强的创业人才,并且在工作任务的分配上也能使每一个会员都有事可干。总而言之,我们这一学期的进步是巨大的,但是还是存在几点瑕疵:
一、部分理事会成员的领导能力有待提高;
二、大型活动的组织能力上还有待提高;
三、社团内成员的凝集力还是不够;
四、社团的执行力还差的远;
五、各部门间的配合严重不足。
上面的四点也就是本学期我们暴漏出的问题,也是影响我社团进步的关键因素之所在。希望我们能在下一学期中得到改进,让我社团能够“百尺竿头更进一步”。
全国数学建模大赛一、数学模型、数学建模与数学建模大赛简单地说:数学模型就是对实际问题的一种数学表述。具体一点说:数学模型是部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决“实际问题的一种强有力的数学手段。
二、数学建模题型、方法与建模过程题型赛题题型结构形式有三个基本组成部分:
一、实际问题背景涉及面宽--有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。
二、若干假设条件有如下几种情况:蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
三、要求回答的问题往往有几个问题(一般不是唯一答案):数学建模方法:机理分析法从基本物理定律以及系统的结构数据来推导出模型。可分为:逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
常微分方程--解决两个变量之间的变化规律,关键是建立“瞬时变化率“的表达式。偏微分方程--解决因变量与两个以上自变量之间的变化规律。数据分析法从大量的观测数据利用统计方法建立数学模型。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=一,二n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=一,二n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。仿真和其他方法因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
各位老师,上午好!我叫XXX,是**级**班的学生,我的论文题目是《义务教育阶段学生数学建模能力评价研究》。论文是在鲍建生导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的研究背景和主要内容向各位老师作一汇报,恳请各位老师批评指导。
首先,我想谈谈这个毕业论文的研究背景。
在过去的三零多年里,数学建模和数学应用成为数学教育的中心话题之一,表现在:建模的文献大量涌现,有关数学建模的书籍相继出版以及一系列国际会议的召开:国际数学教育大会 the International Congresses on MathematicalEducation…ICME,国际数学建模与应用的教学大会the InternationalConferences on the Teaching of Mathematical Modeling andApplications--ICTMA.
在一九七六年,ICME-三上,Henry Pollak整合应用与建模到数学教学中,作了名为“数学和其他学校学科的相互作用”的调查报告(survey lecture),从而把应用与建模带到了前沿;ICME-四上,Bell傲了 “学校里数学应用教学的世界范围的可用材料”的报告、从一九八四年在澳大利亚的ICME -五开始,应用与建模被列为每四年一次的ICME会议的日程,包括常规工作(regular working),专题小组(topic groups)以及报告(lectures)。
ICTMA五的历史起于考虑为那些成为研究生后将被要求解决繁杂的真实问题的本科生做准备,在英国,可以被称为ICTMA之父的David Burghes,决定和学校教师一起合作为中学的小孩制作有趣的建模调查,来活跃学校数学课程。ICTMA团体从一九八三年开始,每二年举办一次ICTMA大会,每次会议都会出版一本会议论文集。一系列会议提供一个论坛,讨论所有领域,所有水平的数学教育---从小学到中学到学院到大学一中涉及的应用与建模教学的所有方面。在,ICTMA成为ICMI的一个附属团体,许多成员参与了 ICMI研究系列一四 “数学教育中的应用与建模”.
其次,我想谈谈这篇论文的主要内容。
本文根据框架上的五个评价桁标进fr测试题的编制,并得到按照“义务教育阶段学生数学建模能力评价框架”编制逑模测试任务时的五个原则:
情境维度:背景不容易剥离:
内容维度:情境下的数学内界所以有可能是多样的;
过程维度:解答建模测试任务:要“数学化”(现实情境--数学模型)的过程;
任务类型设置维度:三种类型的建模测试形式可以选择某种或某几种;
建模水平维度:需要考虑建模测试任务的水平属于再现、联系、反思的哪一个水平。
并按照评价框架生成数学建模能力测试卷,选取全国八个不同地区的一一七二名学生进行测试,采用项目反映理论(IRT: Item Response Theory)对于测试结果进行分析,检验测试题的拟定水平是否符合客观水平,从而验证了评价框架的合理性和有效性。
最后,我想谈谈这篇论文存在的不足。
这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。
谢谢!
数学建模学习心得篇【一】
以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给我们再现了一种“微型科研”的过程。它激发我们学习数学的兴趣,丰富了数学探索的情感体验;有利于我们自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于我们体会和感悟数学思想方法。
记得第一节课时,老师给我们解释什么是数学建模,老师举了一个简单的例子,“问题:树上有十只鸟,开枪打死一只,还剩几只?”,当时我们都觉得很奇怪,这问题很高深吗?这和数学建模有什么关系吗?紧接着老师就给我们解释了这道题,“是无声手枪或别的无声的枪吗?不是。枪声有多大?八零—一零零分贝。那就是说会震得耳朵疼?是。在这个城市里打鸟犯不犯法?不犯。您确定鸟里真的没有聋子?没有。有没有关在笼子里的?没有。边上还有没有其他的树,树上还有没有其他的鸟?没有有没有残疾的鸟或饿得飞不动的鸟?没有。打鸟的人眼有没有花?保证是十只?没有花,就十只。有没有傻得不怕死的鸟?都怕死。会不会一枪打死两只?不会。所有的鸟都可以自由活动吗?完全可以。如果您的回答没有骗人,打死的鸟要是挂在是挂在树上没掉下来,那么就剩一只,若果掉下来,就一只不剩。”这就是数学建模。从不同度思考一个问题,想尽所有的可能,正所谓智者千虑,绝无一失,这才是数学建模的高手。然后,老师讲了数学建模能力的培养与提升,让我们感觉到,原来学好数学建模并不是一件简单的事靠的是分析题意的能力、查找资料的能力、建立数学模型的能力、问题的转化能力、现学现用的能力、编程能力、论文写作能力等多方面的能力。
数学建模学习心得篇【二】
数学建模论文也有固定的结构,其中包括摘要、问题重述与分析、问题假设、符号说明、模型建立与求解、模型检验、结果分析、模型的进一步讨论、模型优缺点等一系列的步骤。与此同时数学建摸论文的模块设计也有固定的格式,问题的背景、问题的重述、基本假设与符号说明、问题的分析与模型的准备、模型的建立、模型的求解、模型的检验、模型的灵敏度与稳定性分析、模型的科学性及现实意义、模型的使用说明、模型的进一步讨论与改进、模型评价与推广、写给__的意见、参考文献、附录等。紧接着老师又给我们讲述了数学建模论文的一系列写作技巧,让我获益匪浅。
八、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)九、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)一零、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
但是数学建模到底是什么样子的,举几个例子:例子一:三个学生住旅馆,服务员收费三零元,于是三个学生每人交了一零元。后来老板对服务员说当天特价,只用收二五元,要服务员把多的五元退给三人。爱贪小便宜的服务员想:“五元给三个人也不好分,自己留下二元,给他们一人一元正好。”于是,服务员退还了学生三元并私吞了二元。现在的结果是:每个学生只出了九元,一共二七元,加上服务员的二元,才二九元。剩下的一元钱哪里去了?我们先从最易理解的角度考虑,三位顾客付了三零英镑,其中二五英镑是餐费,三英镑是找头,二英镑是小费。于是??这个等式完全成立,并且不存在丢失钱的问题。但这种分析却不能打消困惑者的疑惑。二七-二=二五.这是个有意义的加法公式,二七+二=二九,纯属不三不四的胡扯,用来混淆视听,迷惑人。只是由于结果及其接近三零,从而使人相信这两个数字是有着紧密连续的,实际上这个式子没有任何意义。
数学建模学习心得篇【三】
首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
一、借助学生的生活经验,创设和谐课堂。
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
一拿起笔来准备写这个年度总结,眼前就出现了我们数学建模协会一年来的点点滴滴,回望走过岁月,到处都是我们建模人的足迹。中,在社团的所有成员齐心协力,及理学院领导和社团联合会的指示下,社团紧紧围绕各项工作重点,举办了一系列有特色的社团活动。丰富大家课余生活的同时,增长了大家的知识,让我们本学期的校园生活得到极大的拓展。同时也充分展示数学建模协会的特色,发扬社团精神。现作出一年以来我们的工作总结。
一、本学期协会各项活动回顾与成果总结:
一、社团招新
在九月的时候,对于我们数模人来说我们协会还是非常的稚嫩,一二年秋季的社团招新可以说是我们第一次真正意义的招新,所以对于当时那刚上任不久的社团委员来说是一个极大的挑战,因为根本没有上届可供借鉴的经验,所有工作都要他们自己去准备或请教别人,而且那时没有新会员,所以人手也很奇缺。但是我们取得的结果却给了我们极大的欣慰,因为我们通过自己的努力在很短的时间内完成了各项准备工作,并且在招新当天不到一个上午就完成了我们的招新任务,后面还有很多想加入到人都因为名额已满而未能加入。这些都充分说明了我们工作的细致、认真、高效。还有一个特别值得我们一提的是招新过程中理学院周书记还亲临指导,由此可见学校领导对我们协会工作的极大支持与重视。在此我们所有数模人也对学校领导的关心表示衷心的感谢。而招新工作之后我们进行了认真的总结,对以后的同类型工作作了指导性的计划,同时也为下一届招新留下了经验。
二、会员见面会
在协会招新一个星期之后,我们组织了以“相识、相知”为主题的会员见面会以使会员之间相互认识,也对协会作个详细的了解。见面会在信息部长的主持下,会场气氛非常活跃,大家都踊跃的往台上挤,争相着让别人了解自己,许多人都谈起了自己大学甚至人生的理想,让许多委员们都深受感染,以致最后有些人还没上台发言楼栋管理员就要赶我们走了。会后我们通过会员的反馈了解到他们大部都对见面会的情况非常满意,通过见面会不仅认识了许多朋友,也对数学建模有了全新的认识而且还产生了他们的数模梦想。对于见面会的成功,主要得益于会长的指导,及副会和个部长对会长要求的严格执行,使得我们的准备材料非常充分全面,而且还在见面会前还进行了一个模拟式的见面会。
三、数学建模知识讲座
在去年一一月中旬,为了及时促进新会员对数学建模的深入理解和学习,我们邀请到了“全国大学生数学建模优秀指导老师”钟培华对新会员作了一个数学建模专题讲座。因为钟培华老师作为江西赛区仅有的几位由中国数学建模委员会认定全国大学生数学建模优秀指导老师,其讲座具有很强的指导意义和启发性。
我们通过对当时讲座现场的观察,会员们都听的很认真,许多人都能在讲座中积极回答老师的提问。那次的活动对新会员来说是一次可与不可求的学术大餐,对于我们协会的领导者来说我们看到了理学院老师对我们协会的鼓舞与肯定,让我们更坚定了我们事业--建设好我们的协会,为学校培养更具实力的数模精英。
四、圣诞送平安
根据会长的要求:要把协会建设成会员的'家,让会员能在协会里找到存在感,实现价值感,要让各个部长等成为会员的兄弟姐妹而不是干巴巴领导。各位委员都记得很牢,时刻把会员放在心间,因此在去年圣诞的时候,大家都不约而同的要求组织“圣诞送平安”的活动。于是,大家说干就干,经过一番准备后。在平安夜前各位委员各个提着一袋苹果逐个寝室地跑了一晚上,将它们亲手送到了每个会员手中,并递上了平安的祝福。其实,类似的温情活动还很多,像许多部门都严格按照会长要求每半个月邀请部门会员进行一次聊天或散步的活动,这些都是委员们为建设协会温情气氛所作的努力。
五、南昌市高校数学建模联赛
数学建模协会作为一个学术科技类社团,我们的落脚点是要强化学术实力,浓厚学术气氛。因此在今年五月份我们协会联合南昌其他几所高校举办了一个南昌市高校数学建模联赛。此次活动规模庞大。从赛事主办方来看,是联合了几所不同高校,实现了协会的对外交流与实力展示,同时也是我整个我校数学建模能力的一个对外表现。从参赛对象来看,不再局限于协会内部,而是面对我校所有在校生,不限专业不限年级,这就给全校所有的数模爱好者创造了一个难得的机会,使得他们能与其他高校的数模爱好者站在同一舞台上去发挥自己的才能。也许活动规模早已注定了活动结果的成功,本次活动从四月中旬开始策划和准备,四月下旬开始全校范围内进行为期一周的各种途径的活动宣传,宣传结束后在南区门口设立了现场报名点。最后结果有近六零名优秀选手获得参赛资格,共组建了一七支参赛队伍,相比上届参赛人有一定增长。
六、全国大学生数学建模竞赛报名
全国大学生数学建模竞赛的报名及组织工作作为我协会在理学院领导要求及指导下的一项重头工作,目前已由理学院书记给出指示并在会长的组织安排下已完成了前期准备并进入了宣传阶段。从现阶段情况来看,只要后期继续努力,我们定会圆满地完成学校交给我们的任务的。
七、例行培训
根据协会工作安排,协会每半个月组织一次例行培训。从去年到今年培训活动一直坚持举行,让每位会员从数学建模专业能力上获得了极大的提升,为我校培养高水平数学建模人才打下了坚实的基础,同时这也正是我们协会的目标所在,即强化了学术实力,浓厚了学术气氛。
二、本学期协会内工作情况总结:
一、内部建设成效显著
自本学年以来,协会就致力于协会的正规化和人文化的内部建设工作。随着各项工作的顺利开展,各项规章制度也日趋完善。协会在原有的规章制度的条件下,制定了新的干部干事管理方案和会员服务套餐,对协会会员以协会最好的服务使会员感到协会的温馨。除此之外,协会还根据本协会的具体情况完善了人员安排,各部门增设了副部长,这位以后稳定发展铺平了道路提供了一定人员保障。二、文宣工作有声有色
在宣传工作方面,本协会每次宣传工作均进行了认真总结,使得协会宣传部积累了大量的经验性的资料,形成了专业的宣传团队。从最近几次的宣传情况来看,他们的宣传工作都仅仅有条,宣传内容充实有趣,别出心裁。
三、会议召开合理高效
协会借鉴和吸取了以往发展中的各种经验和教训,重视会议的程序规范性和会议效果,听取了广大协会成员的意见,从而制定了比较合理的会议制度。协会会议是协会会长部长等向协会与会成员直接传达协会工作活动的相关动态和安排通知的有效传达方式,并通过会议了解协会相关部门、成员的思想和动态。协会确定每半个月举行一次例会,在会议上,会长及各部门部长对协会的前期工作活动等进行相关的总结及对后期的工作等进行部分规划,主持及发言人员会前的都会做好各项准备,对会议流程作出合理规划,保证了会议的合理性、高效性。
三、协会工作中的问题及后期计划
一、干事主人翁意识不够
协会的干事(副部长级以下会员)对自己的定位还不够清晰,对协会的发展方向和总体规划不是太清楚,将自己仅仅定位在听部长、会长的话,只知道做事而没有更好的思考为什么要这么做,怎么做得更好等,还过多的依赖于自己的部长,部长不通知做某些事,自己就没必要做,就不做,还没有一种以协会主人翁的态度和思想去做协会的各项工作。因此,更不能主动担当协会的各项大任,对协会所提出的各种战略方针没有进行过多的思考,考略问题还不够全面。针对这一问题,我们要在以后的工作中与干事么多交流,在交流中引导会员建立主人翁意思,启发他们对协会深层测的思考。
二、协会部门与部门间交流缺乏
平时小活动大多以部门为单位开展导致部门与部门间的干事关系生疏。从最近几次的大型活动来看,当涉及到部门与部门的合作时就暴露出问题。由此看见,要将合作性的活动分散来开展,要让干事间的交流活动常规化。
三、活动开展缺乏创新
纵观一年以来开展的各项活动,基本都是沿袭上一届的,我们本届没有开展具有创造性的活动来,长此以往必将导致协会气氛沉闷,没有生机,丧失吸引力。
为以后能开展出具有新意的活动,首先我们要主动思考适合我们新活动,同时注重与外校同类型社团的交流,从别人那里获取新的想法。
对于一种新的学科模式从无到有,从了解到运用,这个过程中团队的协作发挥了巨大作用。从开始的研讨建模,教研组内的每位教师都积极参与,提出了很多很好的建议,让这个新的模式从无到有,逐步完善和完备,最终形成了现在的四种物理课型的学科教学模式,即“新授课教学模式”、“复习课教学模式”、“实验课教学模式”和“试卷讲评课教学模式”。在示范展示课的备课过程中,主讲教师精心选择课题,巧妙设计教案,深入钻研教材,研究教法模式,制作多媒体课件,努力把最优秀的课堂教学展示给学生,也把优秀的示范课展示给各位教师。
袁玉妙老师在备课的过程中,为了一个题一句话多次和我们同组的教师进行交流,对于模式上理解不到位的地方,多次向徐主任学习请教,这看出了做为一名优秀教师对工作的认真态度,也体现了上对待工作的责任心。这才有了上课过程中的精彩呈现,精心的组织、严谨的语言、恰到好处的问题设置,突破难点前的问题式前置补偿,这些都让听课的教师耳目一新。
王华东老师的化学实验课《二氧化碳的制取》,真是异彩纷呈。学生的热情参与和那种学习的渴望和激情,让我们这些听课的教师“虽在严冬,如沐春风”。他通过问题的设置,从点及面,从面至点,从个例到共性,用共性再来解决个案,逐步引领着学生步入知识的殿堂。同时及时恰当的.评价也更激励着学生积极参与学习,学生争先恐后,积极发言,让整堂课在热烈而轻松的氛围中完成,取得了很好的学习效果。
各位展示课执教教师,在教学中都体现了“以生为本”的理念,以合作学习小组为抓手,展示了学科建模的成果,并给每位听课教师做了很好的示范。通过观摩学习,我们看到每位教师都有亮点,每一节课都有惊喜,充分显示了我校教师丰厚的教学功底和高超的教学艺术。
社团在整个学校中作为为我校校园文化建设和学生综合素质拓展的重要载体,在繁荣校园文化、丰富学生课余生活、培养学生团队合作精神等方面的作用。数学建模协会也不例外,在十月份数学建模协会本着为社团各成员服务的原则,一直在坚持着完善社团内部组织机构,组织活动为大家提供更广阔的舞台。
本学期,在数学建模协会伙伴的大力支持与合作下,社干多次开会讨论社团的发展以及活动方面的问题,而且在开会期间多次讨论数学建模资料的完善问题。大概的规划了本学期数学建模协会的大致走向。十月是个收获的月份,在我们社团也验证了这一点,这一个月,我们社团举办了一次数学建模新生见面及社干选拔赛,我们社团总共成员五三人,此次活动进行的比较成功,参加人数将近四十人,同时二十多人成为了我们协会重要的一员,他们是我们协会的佼佼者,担任着重要的职务。我也相信有他们的参与,我们协会将会越办越好!事实也证明了这个想法,在十一月四号,我们协会有幸和计算机协会举办了杨涤尘老师的数学建模讲座,在各社干的积极配合下,我们协会和计算机协会的联谊活动举办的还不错,扩大了数学建模在本月中,我们只举办了两次活影响,让更多的人了解了数学建模。在社团文化艺术节中我们社团有幸参加游乐会的关卡设置,针扎气球,大家都玩得很开心。接下里我们跟紫鸢文学社联谊一起看电影,并观看了一些有意义的视频,让我们学会了很多。
总体来说这个学期举办的活动不多,在下个学期我们会更多的举办活动,让会员在社团感受到家的温暖,也会更专注于数学建模资料的汇编,更会去花心思整理数学建模协会资料的整理,准备拿去参赛,希望我们社团将会越办越好!
社团规模的不断扩大,社团布局的不断合理,社团活动的日益丰富,校际联系的不断加强,社团发展不断向“规模化、精品化、特色化”的方向迈进,社团发展水平由追求快速发展的成长期向渐趋稳定、注重内涵式发展的成熟期过渡使我们全体成员的不断追求!
大学建模论文小组总结 第三篇
系 别
班 级
姓 名
学 号
教 师时 间
认识学习总结
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型。
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
三.一提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如高考题第二二题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
三.二强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少
将题中给出的文字翻译成符号语言,成本y=a(一-p%)五
三.三增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等 。
三.四加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
二.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
三.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是章中向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例一根据下表给出的数据资料,确定该国人口增长规律,预测该国的人口数。
时间(年份) 一九一零 一九二零 一九三零 一九四零 一九五零 一九六零 一九七零 一九八零 一九九零
人中数(百万) 三九 五零 六三 七六 九二 一零六 一二三 一三二 一四五
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:
(一)该国的政治、经济、社会环境稳定;(二)该国的人口增长数由人口的生育,死亡引起;(三)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(一)理解实际问题的能力;
(二)洞察能力,即抓住系统要点的能力;
(三)抽象分析问题的能力;
(四)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(五)运用数学知识的能力;
(六)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
大学建模论文小组总结 第四篇
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
学校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
学校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
大学建模论文小组总结 第五篇
一摘要
“摘要”是对整篇论文的缩写,建立在通读全文、理解全文的基础之上。评审专家评阅论文时,总是先看摘要,摘要给专家留下第一印象,是评奖的敲门砖。“摘要”包括: 问题背景,要达到什么目标,解决问题的思路、方法和步骤,模型的主要内容、算法和结论,模型的特色。好的“摘要”能很快吸引评审专家的注意力,它建立在多次修改、反复推敲的基础之上,具有统揽全文、层次分明、重点突出、文笔流畅的特点。
二问题提出
“问题提出”也可写作“问题重述”。是将竞赛试题所给定的问题背景和解题要求用论文书写者自己的语言重新表述。在美国的数学建模竞赛中,这一部分称为 Background或者 Introduction。
三模型假设
任何问题的求解都有它的背景和适用范围,建模试题来自于现实问题,同样受到各种外在因素的约束。“模型假设”就是界定一个范围,或给出几个约束条件,一使得问题的解决过程不至于太复杂,二使得其他人在使用该模型时知晓它的适用范围。“模型假设”不是凭空臆造的,是在建立模型的过程中挖掘、提炼出来的。
四符号说明
数学符号是数学语言的基本元素,具有抽象性、准确性、简洁性的特点。数学模型由数学符号组成,模型的求解通过符号的运算来完成。可见,在建立数学模型时根据需要随时引入必要的数学符号是多么重要的事情。根据竞赛要求,在建立模型的过程中所引入的数学符号要在本模块给出说明,最好的说明方式是列一个表格。
五问题分析
众所周知,解决数学问题最难、最重要的一步就是明确解题思路,确定解题方法。而“分析”,则是迈出这一步的关键。数学建模也这样。建模试题往往由几个子问题组成,这时的“问题分析”既要有全局分析,也要有局部分析。“问题分析”包括: 分析解决该问题需要用到哪些专业背景知识; 分析解决问题的切入点、重点和难点; 分析解决问题的思路、方法、工具和步骤。这样的分析对于“如何建立模型? 采用哪些数学理论或公式? 怎样求解? 会遇到哪些困难?”具有指导作用。
六模型建立
“模型建立”就是将原问题抽象成数学的表示式,主要步骤:
第一步,根据问题的实际背景和专业背景,选择适当的数学理论或工具。例如,如果是变化率问题,则考虑借助于导数或微分方程的手段; 如果涉及面积、体积、曲线弧长、功、流量等几何量或物理量,则考虑运用积分元素法,将问题转化为定积分、或重积分、或曲线曲面积分; 如果是随机数据的处理,则考虑统计分析的方法。
第二步,确定常量、变量,用符号来表示这些量。
第三步,建立数学模型,即建立常量、变量之间的关系。这种关系可以是方程、函数或表格。
七模型求解
少数模型可能是简单的数学式子,求解起来比较容易。有些模型虽然也可用数学式子表示,但其中含有难以析出的参数,求解很困难,有的模型面对的就是一堆数据,对于这两种情形,就需要借助于软件 Matlab,Mathematic,Maple,SAS,SPSS中的某一个编程求解。
八模型检验
数学建模竞赛的题目来自于科技、工程、经济、社会等领域的实际问题。由于问题的复杂性和方法的局限性,所建立的数学模型与实际情况之间会有差距,模型可靠性的检验成为必然。为了检验提交的数学模型与实际情况吻合的程度,竞赛题中往往会提供一些来自于背景问题的实验数据。“模型检验”就是将给定的数据代入模型,计算相对误差和绝对误差,如果误差较大,就要返回去调整模型以提高可靠性。
九模型评价
该标题也可写成“模型的优缺点分析”。分析模型有哪些优点,缺点是什么。也有人将这里的标题改写为“模型评价、推广与改进”。其中的“推广”是将前述“模型假设”中的某些 条 件 适 当 放 宽,看看结果会怎样。“改进”是指对模型或算法做出某种改进。
一零参考文献
列式参考的主要文献。
一一附录
详细的软件程序、程序运算过程、运算结果; 用于模型检验的数据表格; 其他不宜放在正文中的数据表格。
大学建模论文小组总结 第六篇
我是广西电力职业技术学院发电厂及电力系统专业的一名学生,我很高兴有机会参加二零XX年的数学建模竞赛并幸运地获得了广西二等奖。首先要感谢的是学校、学院领导及老师对我们队的支持和帮助。特别要感谢施宁清老师、覃州老师、麦宏元老师、陶国飞老师等老师一直以来对我们精心的辅导和鼓励,才有我们队获奖的机会。参加数学建模竞赛是一件很有意义的事情,它不仅能锻炼每个参赛者连续工作的能力、创造性的思维、把各方面的知识综合运用的能力、熟练使有用计算机以及计算机软件的能力,而更重要的是锻炼了参赛者与伙伴合作、共同完成某项工作的能力。
今年的这个暑假是个不平凡的暑假,我们参加二零XX全国数目竞赛的同学都只有一般的时间,因为还有一半的时间是用来进行培训的。起初参加学校的数学建模选修课,我只是对于数学的爱好,那是的我根本不知道什么是数学建模,更不知道它的魅力何在?我们有一个三零多人组成数模之家,其中有几个大家长,那就是我们的指导老师。他们为了我们花了很多功夫和时间。我们培训只有短短的一个月,而要在一个月内让一个初学者变成一个能参加全国比赛的选手,是多么大的挑战啊?老师在图书馆的阅览室为我们上模模培训课,从最数模软件Lingo到Mathematic,再到Spss等,从简单的线性规划到层次分析法,从牛奶配送问题到NBA赛事分析,老师指导我们一步一步走向数模,去零落数模的魅力!
数学建模竞赛作为一种科研活动,最重要的团队精神和合作意识。数学建模竞赛过程中的各个环节都需要各队员间的协作配合。竞赛开始要选题,各个队员都有自己的偏好和特长,可能会有不同的选择,但是最终必须选择一题,队员间可以通过讨论,最后由队长确定选题。选定题目后,可能确定的题目并不是自己喜欢做的或擅长的,此时我们不能再有个人看法和不满,我们必须全身心的投入已经选定的题目上,这就是个人服从集体服从大局,我们也做到。竞赛的过程中,可能队员间对问题的理解有所不同,此时我们要虚心的听取其他队员的理解和看法,耐心的把自己的看法讲给自己的队友,最终达成一致的意见。在竞赛后期,有的队可能遇到挫折,有的队员就有可能灰心丧气想放弃比赛,积极性下降,此时队员之间特别是队长要鼓励队友,提高整个队的士气。
其实,在紧张的七二小时的时间内完成一篇比较完整的数学论文,其中遇到的困难是难以预料的。三天里,有过争吵,闹过矛盾,但更多的是为了共同的目标而达成共识;有发现新方法的快乐,也有证明方法错误的苦恼。合作的过程中,有各种各样的问题,需要我们团结一致,需要我们有宽阔的胸怀来接受别人的意见,为了一致的目标共同努力,以达到解决问题的目的。
“一份耕耘,一份收获”、“天行健,君子以自强不息”、“百分之九十九的汗水加上百分之一的灵感等于成功”成为我的心得概括
大学建模论文小组总结 第七篇
一、数学建模教学、培训工作
我校自二零XX年开始着手准备参加全国大学生建模竞赛,当时没有专用的场地和计算机,教学资料和条件也很缺乏;辅导教师均未参与过相应的培训,加之学校是一所高职院校,学生入学分数很低,因此辅导教师对数学建模竞赛明显缺乏信心,这些都给数学建模竞赛活动带来了很大的困难。然而,在学院及基础部领导的高度重视和全力支持下,经过数理教研室两年的努力,数学建模培训及教学工作已在我校得以有效开展,随着数学建模协会(已有近百人参与)的成立及两次院级数学建模大赛举办,数学建模在我院学生当中的影响力越来越大。
一、校内数学建模教学活动
(一)推动了教学改革,在教学过程中,老师们意识到围绕一些重要的数学思想,让学生体会用这些思想来解决实际问题,是提高学生数学素质的一个好办法。
(二)专门选拔大一学生组成数学提升班,为参加全国数学建模大赛做好人才贮备。
(三)自二零XX上半年开设数学建模选修课以来,每学期选课的学生都有一零零人左右。
(四)二零XX年学校成立了数学建模协会,学生参与协会活动的热情普遍较高,而数学建模所具备的创新意识培养也使得在这些学生中体现出了浓厚的创新氛围,这些学生在我校起到了良好的模范带头作用。
二、选拔学生、专项培训、精心备赛
(一)领导高度重视数学建模竞赛活动
在二零XX年学院成立了“数学建模指导小组”协调各项工作。学校出台了参加建模竞赛的补助及奖励办法。专门购置计算机,成立了数学建模竞赛专用实验室。集训和竞赛期间,学校、教务处和基础部领导亲自动员并多次亲临现场看望。
(二)组建了一支强有力的辅导教师队伍
在数学建模培训中,辅导教师是保证培训效果和竞赛成功的关键因素。我院辅导教师队伍中由一批老,中、青年教师组成在该项活动中日渐成熟已可委以重任。在辅导员队伍建设中,我们还注意与兄弟院校进行交流,如邀请在建模方面有专长、有造诣的专家教授来校讲学,召开数学研讨会等。
(三)选拔优秀学生组队培训和竞赛
数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩。经过培训后选拔出参加暑期集训队员,暑期集训结束后通过模拟测试最终确定参赛队员。
(四)专项培训、精心准备
数学建模辅导组研究制定了“教学三内容、掌握三能力、备战三阶段”的教学培训模式,最大限度地发挥了教学和培训的作用。
“教学三内容”是指:向学生讲授数学软件(主要包括MATLAB和LINGO)的使用方法;向学生关于数学模型的主要类型和数学建模的主要方法;通过讲解历年优秀论文、让学生掌握如何读懂题目继而建立模型,为参加大赛积累实践经验。
“掌握三能力”是指:学生运用数学建模的方法和步骤分析实际问题的能力;学生应用计算机软件求解数学模型的能力;学生撰写数学建模论文和能力。
“备战三阶段”是指:第一阶段为教学建模课程开设阶段,面向全院学生的数学建模选修课;第二阶段为参赛学生集训阶段,由指导老师带领学生进行强化训练、讲解优秀论文、进行模拟竞赛和写作训练等。第三阶段为参加每年九月举行的全国大学生数学建模竞赛。
二、组建参赛队伍
根据学生的前期培训,八月底开学后,指导教师对报名学生进行了再次选拨,成立了六个竞赛小组,每组三名成员,六名指导老师为:任艳、姚红梅、董亚谋、袁少兵、张萍、郭煜。
三、重视参赛过程、严肃赛场纪律、队员奋战七二小时
在学院领导的关心下,全校一盘棋,各部门通力协作,为大赛提供强有力的支持,后勤服务中心为参赛队员提供一日三餐及安静舒适的招待所;教务处、网络中心在整个比赛过程中,派人跟踪维修及时到位,自始至终没出现任何故障;保卫处派专人负责考场内外的秩序,这些都保证了本次比赛的顺利进行和圆满成功。
九月一三日上午八时上网下载赛题选,六队中选C题D题各三队。各队确定了题目就开始研究和讨论、查资料,忙得不亦乐乎。各组的进度不同,但都具有相当的难度。第一天大多数队员都睡了一晚上,第二天只睡了四小时而且驻地就地解决,第三天所有队员都没有合眼。比赛期间惠亚爱副院长和教务处、基础部领导亲临比赛现场,给大家带来了亲切的问候和热情的鼓励。队员都表示尽最大的努力奋勇拼搏为学院争光!
四、二零XX年数学建模竞赛的体会
首次参赛让我们积累了一些经验,也发现了更多不足,我院的数学建模还有很长的一段路要走。
一、加强基础部数学建模网络的建设,让学生能够更多地从网站上了解数学建模。
二、专门建立数学建模的宣传基地,加大数学建模在我院的宣传力度,使更多的学生了解数学建模,扩大参赛队员选材面。
三、建立数学建模资料室、完善数学建模档案。
四、大力发展数学建模协会的活动。充分利用我院数学建模协会积极开展多种多样的数学建模活动。
五、注重提高学生论文撰写能力。
六、适当增加通信系、计算机系高等数学课程的教学课时。
七、延长培训时间、增加培训课时。
陕西邮电职业技术学院
大学建模论文小组总结 第八篇
一高等数学教学中数学建模思想应用的优势
有助于调动学生学习的兴趣
在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。
有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。
有助于培养学生的创新能力
和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。
二高等数学教学中数学建模思想应用的原则
在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。
三高等数学教学中融入数学建模思想的有效方法
转变教学观念
在高等数学教学中应用数学建模思想,需要重视教学观念的`转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,三七支球队进行淘汰赛,每轮比赛出场二支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留一支球队,其它球队进行淘汰赛,那么三六/二+一八/二+一零/二+四/二+二/二+一=三六。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰一支球队,那么就需要淘汰三六支球队,进而比赛场次为三六。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。
高等数学概念教学中的应用
在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。
高等数学应用问题教学中的应用
对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。
四高等数学教学中应用数学建模思想的注意事项
避免“题海战术”
数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。
强调学生的独立思考
在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。
注意恐惧心理的消除
在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。
五结语
总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。
大学建模论文小组总结 第九篇
大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动。为了更好地增进各二级院、系之间的学习交流与合作,也为了给我院学生参加科技创新活动提供有效渠道,进一步创造我院良好的科技创新氛围,院团委于二零XX年四月一七日举行了太原师范学院数学建模竞赛。我系同学在此次竞赛中取得了非常优异的成绩,为化学系争得了荣誉!
当时学习部接到通知后立即向我系所有同学进行宣传、鼓励,大一、大二、大三年级的同学都踊跃报名,当时我们对数学建模一无所知,没有教材、资料,没有软件,极具挑战性与竞争性。同学们自觉从图书馆借阅有关书籍,研究了大学生数学建模方面的教辅,参加了数学系组织的数学建模培训,经过短时间高效率的训练,我系同学胸有成竹的参加了此次竞赛并取得了如此优异的成绩!
参赛同学能够取得如此优异的成绩不仅离不开个人的努力,更是与团队的合作息息相关,此次竞赛是以小组形式参加,在整整三天的做题过程中,大家没有因为个人意见发生任何的争执,而是互相商量讨论,认真思考作答。
我院系领导重视,各部门积极配合,为活动的顺利进行提供有力保障。
①我院把组织数模竞赛作为一项重要的教学活动纳入了校园科技文化节的日程中,由数学系主管承办,负责报名和竞赛组织,选派业务精良、经验丰富的教师组成数学建模授课和指导教师队伍进行数学建模授课和培训。
②各系分团委书记针对建模竞赛进行了开会研讨、协调以保证大赛能够顺利进行。任主任、狄书记和左老师亲自动员参赛选手,为了赛出好成绩,想方设法改善赛场条件,做好后勤保障工作。不仅在比赛三天时间里为参赛选手提供系办公电脑,还请王新年老师为我系做了一次数学建模的一次简要培训。
辛勤的耕耘,爱心的培育,终于获得了丰收的快乐。这里,我们要感谢我系各级领导对数学建模竞赛的支持和帮助,也感谢刻苦好学,顽强拼搏的学生,是他们为我系创造了辉煌,是我们一起努力,共同奋战,才能取得优异的成绩。
学习部